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Aerodynamic knowledge for flapping airfoil is obtained by application of the multiobjec-
tive design exploration framework to a multiobjective aerodynamic flapping airfoil design
optimization problem.The objectives of the design optimization problem are 1) time-averaged
lift coefficient maximization, 2) time-averaged drag coefficient minimization, and 3) time-
averaged required power coefficient where the airfoil oscillates in plunging and pitching
modes. Pareto-optimal solutions are obtained by a multiobjective evolutionary optimization
and analyzed with the self-organizing map.Aerodynamic performance of each flapping airfoil
is evaluated by a two-dimensional Navier–Stokes solver. Analysis of the flow over the extreme
Pareto-optimal flapping airfoils provides insights into flow mechanism for thrust maximiza-
tion, lift maximization, and required power minimization. Analysis of the design objectives
and design parameters with the self-organizing map leads to useful guidelines for practical
flapping-wing micro air vehicles. The present result ensures that the multiobjective design
exploration framework is useful approach for real-world design optimization problems.

Nomenclature
CL(t) lift coefficient
CM(t) moment coefficient
Cp pressure coefficient
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CPR(t) required power coefficient
CT(t) thrust coefficient
c airfoil chord
f flapping frequency nondimensionalized with U∞ and c

h plunge amplitude nondimensionalized with c

k reduced frequency, 2πf c/U∞
St Strouhal number, kh/2π

T flapping period nondimensionalized with U∞ and c

t time nondimensionalized with U∞ and c

U∞ freestream velocity
x(t) horizontal position nondimensionalized with c

y(t) vertical position nondimensionalized with c

α(t) pitch angle
αo pitch angle offset
α1 pitch angle amplitude
φ phase shift
η propulsive efficiency, CT/CPR

Subscript
ave time-averaged value over one flapping cycle

I. Introduction

RESEARCH interest in flapping wings in aerospace engineering has recently increased as flapping wing systems
may be more suitable for micro air vehicles (MAVs) than fixed-wing systems at low Reynolds number. For the

development of MAV with flapping wing systems, understanding of aerodynamic mechanism of a flapping wing
for higher aerodynamic performance in terms of lift, thrust, and efficiency is important. Garrick [1] estimated the
thrust and propulsive efficiency of plunging or pitching airfoils using incompressible potential flow analysis. He
demonstrated that thrust is proportional to square of frequency and square of plunge amplitude. Tuncer and Platzer
[2] performed Navier–Stokes computations of an oscillating airfoil, where the propulsive efficiency is found to be
a strong function of reduced frequency and the plunge amplitude. Isogai et al. [3] performed a parametric study of
an airfoil oscillating in coupled mode (pitching and plunging) using Navier–Stokes simulations, where the highest
efficiency was achieved in ‘the case in which the pitching oscillation advances 90 degrees ahead of the plunging
oscillation and the reduced frequency is at some optimum value’. Tuncer and Kaya [4] optimized thrust and/or
propulsive efficiency of an oscillating airfoil using a gradient-based method coupled with a Navier–Stokes solver
where design parameters are pitch and plunge amplitudes and the phase shift between the pitch and plunge motions.
They demonstrated that there is tradeoff between maximizations of thrust and propulsive efficiency and effective
angle of attack is to be reduced for a high propulsive efficiency to prevent large-scale leading edge separation.
Anderson et al. [5] experimentally showed that the phase angle shift between pitch and plunge oscillations have
strong effects on propulsive efficiency.

While studies in the past have given significant insight into understanding the aerodynamic mechanism of a
flapping wing, most of them considered only maximization of thrust and propulsive efficiency. Previous discussions
on tradeoff between thrust and propulsive efficiency were intricate because propulsive efficiency is a function of
the thrust itself. For example, higher thrust turns out to have higher propulsive efficiency even if the used power
is constant. Thus, in addition to thrust, required power instead of propulsive efficiency should be considered for
easier understanding of the flapping mechanism. Past studies also have not discussed the relationship between these
aerodynamic performances and lift, which is an important aerodynamic index as it determines vehicle, payload, and
fuel weights. In fact, the flapping motion design is a typical multiobjective design optimization problem that has
three contradicting objectives; maximization of thrust, maximization of lift, and minimization of required power.

Recently, the idea of ‘multiobjective design exploration (MODE)’ was proposed as a tool to extract essential
knowledge from multiobjective optimization problems such as tradeoff information between contradicting objectives
and effects of each design parameter on the objectives. In the MODE framework, Pareto-optimal solutions are obtained
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by using multiobjective optimizations such as multiobjective evolutionary algorithms [6] and then important design
knowledge is extracted by analyzing the obtained Pareto-optimal solutions using so-called data mining approaches
such as self-organizing map (SOM) [7] and analysis of variance [8]. Obayashi et al. applied the idea of MODE to
understand fly-back booster of reusable launch vehicle design and regional-jet wing design and got some practically
import design knowledge [9]. Here, multiobjective optimization and usage of data mining methods are essential parts
of MODE. Pareto-optimal solutions contains such information as: which objectives are contradicting, which design
parameters determine Pareto-optimal solutions/nonPareto-optimal solutions, which design parameters are related to
the tradeoff between the objectives, and so on. If a single-objective optimization is done, obtaining such information
is not straightforward. A typical multiobjective design optimization problem involves some objectives (sometimes
more than ten) and dozens of design variables (sometimes more than a hundred). Usage of data mining methods is
necessary to analyze Pareto-optimal solutions of such design problems.

The objective of the present study is to extract aerodynamic knowledge on the flapping motion such as 1) tradeoff
information between lift, thrust, and required power, 2) effect of flapping motion parameters such as plunge ampli-
tude and frequency, pitching angle amplitude and offset, and phase difference on the objective functions, and to
create guidelines for the design of flapping motion for lift maximization, thrust maximization and required power
minimization. To obtain such knowledge, the MODE framework is applied to a multiobjective aerodynamic design
optimization problem of a flapping airfoil for a MAV for Mars exploration where lift and thrust are maximized and
required power is minimized. The aerodynamic performance and required power are evaluated with the numerical
simulations of the two-dimensional incompressible Navier–Stokes equations. Multiobjective evolutionary algorithm
and self-organizing map are used to explore the design problem.

II. Design Optimization Problem
Entomopter, which is a MAV discussed in the United States for future Mars exploration [10,11], is considered.

Entomopter has flapping wing system intending higher lift in extremely low atmospheric density at Mars surface (1/70
that at Earth surface) and take off, landing, and hovering capabilities. This MAV has a span length of 1 m and chord
length of 0.1 m. The wing airfoil is thin with moderate camber and a sharp leading edge to enhance vortex generation.
Its cruising speed is more than 10 km/h and flight time of a typical mission is 12 min. The cruising Reynolds number
based on Mars air properties and reference length of the chord is assumed to be 103. It is estimated that the wing of
Entomopter will produce lift coefficients between 7.95 and 10.6 with the help of boundary layer blowing. Note that
the results are applicable to MAV on the earth because the Reynolds number is only the non-dimensional parameter
that represents Mars atmosphere in this study.

As a first step towards understanding the flapping wing mechanism, a flapping airfoil is considered in this study.
The objectives of the present design optimization problem are maximization of the time-averaged lift and thrust
coefficients and minimization of the time-averaged required power coefficient at its cruising condition, where the
lift, thrust, and required power are averaged over one flapping cycle:

CL,ave = f ·
∫ 1/f

t=0
CL(t)dt (1)

CT,ave = f ·
∫ 1/f

t=0
CT(t)dt (2)

CPR,ave = f ·
∫ 1/f

t=0
CPR(t)dt (3)

where

CPR(t) = −
(

dy(t)

dt
· CL(t) + dα(t)

dt
· CM(t)

)
(4)
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Fig. 1 Parameterization of flapping motion.

Table 1 Design space

Design parameters Lower boundary Upper boundary

Reduced frequency k 0.2 0.9
Plunge amplitude h 0.5 2.2
Pitch amplitude α1 10 [deg] 45 [deg]
Pitch offset α0 0 [deg] 30 [deg]
Phase shift φ 70 [deg] 110 [deg]

Constraints are applied on averaged lift and thrust coefficients so that they are positive. The airfoil is assumed to be
NACA 0002 airfoil. The flapping motion of the airfoil (see Fig. 1) is expressed by plunging and pitching motions as:

x(t) = t (5)

y(t) = h · sin(kt) (6)

α(t) = α1 sin(kt + φ) + α0 (7)

where design parameters are h, k, α0, α1, and φ. The present design space is shown in Table 1.

III. Aerodynamic Force Evaluation
The two-dimensional incompressible Navier–Stokes equations and the continuity equation on the generalized

curvilinear coordinates are solved using pseudo-compressible flow simulation approach [12]. The dual-time stepping
procedure [13], which allows an implicit method to be used in real time with the updated solution obtained through
subiterations in pseudo-time, is employed. The numerical fluxes are evaluated by the Roe scheme [14] where physical
properties at the grid interface are evaluated by the MUSCL interpolation [15] based on primitive variables. The
viscous terms are evaluated by second-order central differencing scheme. Lower-upper symmetric Gauss-Seidel
(LU-SGS) factorization implicit algorithm [16] is used for the time integration. Note that the original version of
the program for compressible flow analysis has been used for a wide variety of computational fluid dynamic (CFD)
studies [17–19].

To compute aerodynamic performance of flapping motions, three cycles are simulated and averaged lift and thrust
coefficients and required power are obtained for the third flapping cycle. Figure 2 shows the time history of lift
coefficient of three flapping motions. This figure indicates that the lift coefficient is periodic and the lift coefficient
for the second and third cycle is qualitatively same.

The corresponding computational grid is a C-type grid (Fig. 3) that has 201 (chordwise direction) ×101 (normal
direction) grid size. Number of grid points on the airfoil is 151. Minimum spacing near the wall is 0.0001. Number
of time steps for each flapping cycle is 1700. To confirm grid and time step size convergence, four computational
results with different grid sizes and numbers of time steps in each flapping cycle are compared in Table 2. Time
histories of CL in the third flapping period are compared in Fig. 4. Because CL,ave and maximum and minimum CL

are almost the same, it is concluded that the present grid size and time step size are enough for qualitative discussion.
The freestream flow conditions are applied to the inflow boundary. The outer boundary of the computational

doman is placed at twenty chord lengths away from the leading edge of the airfoil. On the outflow boundary, pressure
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Fig. 2 Time histories of CL.

Fig. 3 Close-up view of the computational grid near the airfoil.

Fig. 4 �x and �t convergence.
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Table 2 Number of grid points and time steps in each case

Number of Number of time steps
grid points in each period CL,ave

Case 0 201 × 101 1700 4.02
Case 1 401 × 201 3400 4.07
Case 2 401 × 201 6800 3.97
Case 3 401 × 201 13,600 3.79

is fixed to the freestream value while the other physical properties are extrapolated from the corresponding interior
grid points. The airfoil surface is treated as a non-slip wall boundary. Physical properties on the wake boundary are
interpolated from the adjacent grid points. The initial condition is the uniform flow.

IV. Design Optimization
The objective of the present study is to obtain aerodynamic knowledge for researchers or designers of flapping

wing MAV from the multiobjective MAV design problem. To extract such knowledge, it is necessary to obtain
Pareto-optimal solutions of the multiobjective design optimization problem and to analyze them with data mining
approaches such as self-organizing maps.

Traditional methods such as gradient-based methods are basically single-objective optimization methods. When
such a method is applied to a multiobjective optimization problem, the problem is converted to a single-objective
design optimization problem by combining the multiple objectives into a single objective typically using a weighted
sum method. This approach can find only one of the Pareto-optimal solutions corresponding to the user-specified
weight coefficients. Hence, a multiobjective design optimization method is required for the present study.

Multiobjective evolutionary algorithm (MOEA, for example, see [6]) is an optimization algorithm mimicking
mechanism of natural evolution, where a biological population evolves over generations to adapt to an environment
by selection, recombination and mutation. MOEA has multiobjective optimization nature thanks to its population-
based search algorithm toward higher fitness regions where fitness is determined through Pareto-ranking and fitness
sharing. In addition, MOEA has some other advantages over traditional approaches such as:

1. Suitability to real-world design optimization problems: Because MOEA does not use function gradients,
MOEA is suitable to real-world design optimization problems which usually involve non-differentiable/
multimodal objective function and/or a mix of continuous, discrete, and integer design parameters.

2. Suitability to parallel computing environment: Because MOEA is a population-based search algorithm, all
design candidates in each generation can be evaluated in parallel by using the simple master-slave concept.
Parallel efficiency is also very high, if objective function evaluations consume most of central processing
unit (CPU) time. Aerodynamic optimization using CFD is a typical case.

3. Simplicity in coupling CFD codes: As MOEA uses only objective/constraint function values of design
candidates, MOEA does not need substantial modification or sophisticated interface to the CFD code. If an
all-out re-coding were required to every optimization problem, like the adjoint methods, extensive validation
of the new code would be necessary every time. MOEA can avoid such troubles.

These features are essential for knowledge extraction from the present multiobjective optimization problem. There-
fore, the MOEA presented in the next section is used to obtain the Pareto-optimal solutions of the present flapping
motion design optimization problem.

As MOEA originally simulated natural evolution, traditional MOEA treats design parameters represented by
binary numbers. However, for real design parameter optimizations such as the present aerodynamic optimization
problem, it is more straightforward to use real numbers. Thus, the present design parameters h, k, α0, α1, and φ are
represented by real numbers.

A flowchart of the present MOEA is illustrated in Fig. 5. The population size is kept at 32 and the maximum
number of generations is set to fifty. The initial population is generated randomly so that the initial population covers
the entire design space presented in Table 1.
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Generation of the initial population (32 individuals)

Evaluation of CL,ave, CT,ave, CPR,ave and constraint 
functions of the present population (32 individuals)

Fitness assignment among the preserved and the 
present population (64 individuals)

Pareto ranking
Fitness sharing
Pareto-based constraint handling

Selection of the best 32 individuals

Selection of parents

Reproduction of new generation (32 individuals)
Crossover
Mutation

Fitness assignment among the best 32 individuals
Pareto ranking
Fitness sharing
Pareto-based constraint handling

P
reservation of t he best 32 individuals

Archiving
(all individuals)

Fig. 5 Flowchart of the present MOEA.

Values of the present objective and constraint functions CL, CT, and CPR of each design candidate are evaluated
through CFD and fitness of each design candidate is computed according to Pareto-ranking, fitness sharing, and
Pareto-based constraint handling [20] based on its objective function and constraint function values. Here, Fonseca
and Fleming’s Pareto-based ranking method and fitness sharing method [21] are used for Pareto-ranking where
each individual is assigned a rank according to the number of individuals dominating it. In Pareto-based constraint
handling, rank of feasible designs is determined by Pareto-ranking based on the objective function values while rank
of infeasible designs is determined by Pareto-ranking based on the constraint function values.

Parents of new generations are selected through a roulette selection [22] from the best 32 individuals among the
present generation and the best 32 individuals in the previous generation.

New generations are reproduced through crossover and mutation operators. Crossover is an operator which
combines the genotypes of the selected parents and produces new individuals with the intent of improving the fitness
value of the next generation. Here, the blended crossover [23] where α of 0.5 is used for crossover between the
selected solutions. Mutation is applied to the design parameters of the new generation to maintain diversity. Here,
mutation takes place at a probability of 20% and then adds a random disturbance to the corresponding gene up to
10% of the given range of each design parameter.

An evaluation process at each generation is parallelized using the master–slave concept, where the grid generations
and the flow calculations associated to the individuals of a generation are distributed into 32 processing elements of
the JAXA ISAS NEC SX-6 computing system. This makes the corresponding turnaround time almost 1/32 because
the CPU time used for MOEA operators are negligible. Total turn around time of the present optimization is roughly
nine hours.

V. Data Mining
If an optimization problem has two objective functions, the tradeoff relation between them as well as the effect

of each design parameter can be easily understood through a two-dimensional plotting. On the other hand, under-
standing the tradeoff relations and effect of design parameters involving three or more objective functions is not so
straightforward. Kohonen’s SOM [7] is used to analyze the Pareto-optimal solutions in the present study.

SOM is an artificial neural network where all the solutions are aligned on a grid according to Kohonen algorithm
so that neighboring nodes are similar to each other. Mostly, SOM is used for nonlinear projections of input data in
three or higher dimensional space onto two-dimensional space to extract knowledge implicit in data such as attributes
and features.

262



OYAMA ET AL.

A software package called Viscovery SOMine plus 4.0 (http://www.viscovery.net/) produced by Eudaptics GmbH
is used. Although SOMine is based on the general SOM concept and algorithm, it employs an advanced variant of
unsupervised neural networks, i.e. Kohonen’s Batch SOM, which is a more robust approach owing to its mediation
over a large number of learning steps.

The Pareto-optimal solutions distributed in the present three-dimensional objective function space (CL maxi-
mization, CT maximization, and CPR minimization) are mapped into nodes on a two-dimensional grid according
to the similarity in terms of the objective function values. Here, map size is 51 × 41 (2070 nodes) and number of
training is 45 with tension of 0.5. These values are automatically determined by the SOMine. It should be noted that
direction and Euclidean distance in the objective function space are lost on the SOM. Then the two-dimensional map
colored according to each objective function, each design parameter, propulsion efficiency, and Strouhal number are
compared for the knowledge acquisition from the present problem.

VI. Results and Discussion
The Pareto-optimal flapping motions (shown by spheres) and all the other solutions (shown by circles) obtained

by the present optimization are plotted in the three-dimensional objective function space (Fig. 6). The Pareto-optimal
flapping motions are all optimal in the sense that no other solutions in the search space are superior to them when all
objectives are considered. Distribution of the Pareto-optimal solutions visualizes tradeoff among the maximization
of the averaged lift and thrust and minimization of the averaged required power while it is very difficult to understand
effect of each design parameter on the tradeoff in the three-dimensional scatter plot. In the first subsection, flow
mechanism of the extreme Pareto-optimal flapping motions, i.e. lift-maximum, thrust-maximum, required-power-
minimum designs (presented in Table 3) is investigated. Then, in the next subsection, the Pareto-optimal solutions
are analyzed with SOM to obtain knowledge from all Pareto-optimal solutions.

A. Analyses of the Extreme Pareto-optimal Solutions
1. Flapping Motion for Maximum Thrust

Pressure coefficient distribution around the flapping airfoil for maximum thrust is shown in Fig. 7. This figure
indicates that the upstroke produces a strong vortex separated from the leading edge on the lower surface to generate
large thrust and the downstroke produces another strong vortex separated from the leading edge on the upper surface
for large thrust. While this flapping motion produces thrust in both upstroke and downstroke, averaged lift is small
because the vortex generated in upstroke produces negative lift.

Fig. 6 Evaluated flapping motions (circles) and obtained Pareto-optimal solutions (spheres) plotted in the objective
function space.
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Table 3 Objective functions and design variable values of the
extreme Pareto-optimal solutions

Maximum Maximum Minimum
thrust lift required power

flapping flapping flapping

CT,ave 2.09 0.77 0.03
CL,ave 0.42 1.97 0.13
CPR,ave 5.42 3.27 0.09

Reduced frequency k 0.88 0.80 0.46
Plunge amplitude h 2.10 2.06 1.88
Pitch amplitude α1 38.2 [deg] 34.9 [deg] 37.7 [deg]
Pitch offset α0 3.53 [deg] 21.2 [deg] 1.18 [deg]
Phase shift φ 94.0 [deg] 90.4 [deg] 85.5 [deg]

Fig. 7 Pressure coefficient distribution around the thrust maximum flapping motion.

Corresponding time histories of vertical position, pitch angle, effective angle of attack, lift, thrust, and required
power coefficients of the maximum thrust flapping motion are presented in Fig. 8. This figure shows that flapping
motion for maximum thrust has large absolute effective angle of attack to produce strong vortex separated from the
leading edge in both downstroke and upstroke.

Reduced frequency, and plunge amplitude reached the upper boundary of the present design space to produce
strong vortices. Because the flapping motion for maximum thrust needs to create thrust in both downstroke and
upstroke, the flapping motion and corresponding flow became symmetric. As a result, the pitch offset of this motion
became almost zero.

2. Flapping Motion for Maximum Lift
Pressure coefficient distribution around the flapping airfoil for maximum lift is presented in Fig. 9. During the

upstroke motion, the airfoil does not generate any large vortex as it would produce negative lift. On the other hand,
during the downstroke, the airfoil generates two vortices; one separated from the leading edge and one separated
from the trailing edge. It is estimated that as the vortex separated from the trailing edge does not contribute to thrust,
the flapping motion for maximum thrust did not generate it.

Corresponding time histories of vertical position, pitch angle, effective angle of attack, lift, thrust, and required
power coefficients of the maximum lift flapping motion are presented in Fig. 10. The effective angle of attack is
almost zero in upstroke while it is more than 40 degrees in downstroke. As a result, lift maximum flapping motion
generates very large lift in downstroke while it generates small thrust and small negative lift in upstroke.
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Fig. 8 Time histories of position, pitch angle, effective angle of attack, and the aerodynamic coefficients of the thrust
maximum flapping motion.

Fig. 9 Pressure coefficient distribution around the lift maximum flapping motion.

The flapping motion for maximum lift had large reduced frequency, and large plunge amplitude to produce strong
vortices. To create strong vortex only in downstroke, the flapping motion for maximum lift had substantial pitch
offset. The pitch amplitude was optimum at 35 degrees in the present design problem as the larger pitch amplitude
reduces lift component and generates negative thrust component produced by the vortices in downstroke.

3. Flapping Motion for Minimum Required Power
Pressure coefficient distribution around the flapping airfoil for minimum required power is presented in Fig. 11.

In contrast to the previous extreme flapping motions, this flapping motion does not create any strong vortex in both
downstroke and upstroke to minimize the required power.

Corresponding time histories of vertical position, pitch angle, effective angle of attack, lift, thrust, and required
power coefficients of the minimum required power flapping motion are presented in Fig. 12. This figure confirms
that this flapping motion maintain almost zero effective angle of attack in both upstroke and downstroke.

265



OYAMA ET AL.

Fig. 10 Time histories of position, pitch angle, effective angle of attack, and the aerodynamic coefficients of the lift
maximum flapping motion.

Fig. 11 Pressure coefficient distribution around the required power minimum flapping motion.

Because the flapping motion for minimum required power needs to not create any vortex in both downstroke and
upstroke, the flapping motion and corresponding flow became symmetric. As a result, pitch offset became almost
zero.

B. Data Mining Using SOM
Figure 13 is the obtained map using SOM where each node is colored according to each objective function value.

It should be noted that as the number of Pareto-optimal solutions is 560 and the number of nodes of SOM is 2070,
each Pareto-optimal solution is represented by one or more nodes on the map as shown in the figure. For example,
four nodes located at the lower left corner represent CL,ave maximum design while one node located at the upper
right corner represents CPR,ave minimum design. This figure shows flapping motions for smaller required power are
mapped on the right side of the map. Flapping motions for larger lift are mapped on the lower left and lower right
corners where flapping motions mapped on the lower left corner require large power while those mapped on the
lower right corner require smaller power. The flapping motions for larger thrust are mapped on the left hand side.
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Fig. 12 Time histories of position, pitch angle, effective angle of attack, and the aerodynamic coefficients of the
required power minimum flapping motion.

Fig. 13 SOM colored according to each objective function.

These results indicate the tradeoff between the three objectives exists and thus there is no solution that optimizes
all three objectives simultaneously. This figure also indicates that maximizing thrust requires more power than
maximizing lift.

The same map colored according to propulsive efficiency and Strouhal number is presented in Fig. 14.According to
the research by Taylor et al. [24], flying animals such as birds, bats and insects in cruise flight operate within a narrow
range of Strouhal number between 0.2 and 0.4. Also, Young [25] demonstrated some Navier–Stokes computations
to show propulsive efficiency has a peak around a Strouhal number of 0.2. Strouhal number of the obtained flapping
motions is consistent with these results.

Distribution of propulsive efficiency shows that flapping motions for maximum propulsive efficiency have small
lift. This result is understandable because generation of lift does not contribute to the propulsive efficiency, which
is determined by thrust divided by the required power. The propulsive efficiency was maximized at a certain point
between maximization of thrust and minimization of required power. Figure 14 also shows that St becomes smaller
as required power becomes smaller while it becomes larger as thrust or lift becomes larger.
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Fig. 14 SOM colored according to propulsive efficiency and Strouhal number.

Fig. 15 SOM colored according to each design parameter.

The same SOM colored according to each design parameter value is presented in Fig. 15. Color range of the map
corresponds to the present design range. Comparison between Figs. 13 and 15 gives additional knowledge on the
present design optimization problem:

1. Phase shift between plunging and pitch angle cycles of the obtained Pareto-optimal solutions are almost 90
degrees. This result is consistent with previous researches on flapping motion such as [3] where efficiency
became high when pitch leads plunging by about 90 degrees.

2. Pitch angle offset of most Pareto-optimal flapping motions is almost zero except for the flapping motions
for high lift. This is understandable as the thrust maximum and required power minimum flapping motion is
symmetric while lift maximum flapping motion generates lift only in downstroke.

3. Reduced frequency seems to be a tradeoff parameter between minimization of required power and
maximization of lift or thrust where smaller frequency leads to smaller required power.

4. Plunge amplitude of most Pareto-optimal flapping motions reached the upper limit of the present design
space. This fact indicates that larger plunge amplitude is preferable when two-dimensional flow is assumed.
However, in real flapping wing design, the plunge amplitude is restricted by span length and angle of the
flapping wing along the flap arc.

5. Pitch angle amplitude of the most Pareto-optimal solutions distributes between 35 and 45 degrees, which
indicates that certain level of pitch angle amplitude is optimum for high performance flapping motion. This
figure also indicates that better solutions may have been found if the search space was wider because 45
degrees is upper limit of the present search space of α1.

This knowledge is consistent with that obtained in the previous subsection.
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VII. Conclusions
The MODE framework has been applied to a multiobjective aerodynamic design optimization problem of a

flapping airfoil to obtain aerodynamic knowledge for practical flapping-wing MAV design. To explore the design
problem, the Pareto-optimal solutions obtained by a multiobjective evolutionary algorithm were analyzed with the
self-organizing map and the time histories of lift, thrust, and required power coefficients and corresponding pressure
coefficient distribution of the extreme Pareto-optimal solutions were discussed.

Discussion on the aerodynamics of the extreme Pareto-optimal solutions gave us insight into flow mechanism for
thrust maximization, lift maximization, and required power minimization:

1. Aerodynamic forces produced by a flapping airfoil are largely owing to vortex generation both from the
leading edge and the trailing edge.

2. Flapping motion for maximum thrust generates large thrust and large lift in downstroke and large thrust and
large negative lift in upstroke.

3. Flapping motion for maximum lift generates large positive lift in downstroke and small thrust and lift in
upstroke.

4. Flapping motion for minimum required power generates small thrust and lift in both upstroke and downstroke.
Analysis of the objective function values of the Pareto-optimal solutions using SOM showed tradeoff between

thrust maximization, lift maximization and required power minimization. Analysis of the design variables of the
Pareto-optimal solutions using SOM leaded to some knowledge on aerodynamic flapping mechanism:

1. Phase shift between plunging and pitch angle cycles of the obtained Pareto-optimal solutions are almost
ninety degrees.

2. Pitch angle offset of most Pareto-optimal flapping motions is almost zero except for the flapping motions for
high lift.

3. Reduced frequency is a tradeoff parameter between minimization of required power and maximization of
lift or thrust where smaller frequency leads to smaller required power.

4. Larger plunge amplitude is preferable when two-dimensional flow is assumed.
5. Certain level of pitch angle amplitude is optimum for high performance flapping motion.
The present result ensured that the MODE framework coupled with CFD is useful approach for real-world design

optimization problems. Although the present demonstration was MAV design for Mars exploration, the aerodynamic
knowledge extracted from the present study should be useful for designers of flapping-wing MAV for Earth air as
long as Reynolds number and cruising speed is almost same.
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